BLANTERVIO103

A Review of Simulation Urban Growth Model

A Review of Simulation Urban Growth Model
Sabtu, 12 Juni 2021

A Review of Simulation Urban Growth Model

Authors : Feri Nugroho, Dr. Omar Ismael Al-Sanjary,

Abstract :

Urban development has become a problem in many cities, especially in developing countries. The availability of areas for development is needed  to  deal  with  rapid population  growth  and urbanization.  The  purpose  of  this  study  was  to  identify  urban  growth  models.  Due  to urban growth planning, the city will be more manageable and organized. From the conclusions of urban modeling identification can pro-vide an idea of what model is appropriate for use in urban growth studies. The results of this urban growth model identification could be a reference in urban growth modeling in better urban planning.

Full Text:

PDF


References:

M. K. Jat, M. Choudhary, and A. Saxena, “Application of geo-spatial techniques and cellular automata for modeling urban growth of a heterogeneous urban fringe,” Egypt. J. Remote Sens. Sp. Sci., 20(2), 223–241, 2017.

M. M. Aburas, Y. M. Ho, M. F. Ramli, and Z. H. Ash’aari, “Improving the capability of an integrated CA-Markov model to simulate Spatio-temporal urban growth trends using an Analytical Hierarchy Process and Frequency Ratio,” Int. J. Appl. Earth Obs. Geoinf., 59, 65–78, 2017.

K. S. Kumar, K. P. Kumari, and P. U. Bhaskar, “Application of Markov Chain & Cellular Automata based model for prediction of Urban transitions,” Proceedings of the Int. Conf. Electr. Electron. Optim. Tech., pp. 4007–4012, 2016.

M. Ai-Ageili, M. Mouhoub, and J. Piwowar, “Integrating remote sensing, GIS and dynamic models: Cellular automata approach for the simulation of urban growth for the city of Montreal,” Proceedings of the Can. Conf. Electr. Comput. Eng., pp. 1–6, 2013.

K. Abutaleb and F. Ahmed, “Modeling of urban change using remote sensing data and cellular automata technique,” Arab. J. Geosci., 9(15), 1–10, 2016.

M. Jafari, H. Majedi, S. Monavari, A. Alesheikh, and M. Kheirkhah Zarkesh, “Dynamic simulation of urban expansion based on cellular automata and logistic regression model: Case study of the Hyrcanian Region of Iran,” Sustainability, 8(8), 1-18, 2016.

A. Siddiqui, A. Siddiqui, S. Maithani, A. K. Jha, P. Kumar, and S. K. Srivastav, “Urban growth dynamics of an Indian metropolitan using CA Markov and Logistic Regression,” Egypt. J. Remote Sens. Sp. Sci., 2017, 1-8, 2017.

T. Munshi, M. Zuidgeest, M. Brussel, and M. van Maarseveen, “Logistic regression and cellular automata-based modelling of retail, commercial and residential development in the city of Ahmedabad, India,” Cities, 39, 68–86, 2014.

S. Saeedi, “Integrating macro and micro scale approaches in the agent-based modeling of residential dynamics,” Int. J. Appl. Earth Obs. Geoinf., 68, 214–229, 2018.

S. T. Lee, C. W. Wu, and T. C. Lei, “CA-GIS model for dynamic simulation of commercial activity development by the combination of ANN and Bayesian probability,” Procedia Comput. Sci., 18, 651–660, 2013.

H. Dadashpoor and M. Nateghi, “Simulating spatial pattern of urban growth using GIS-based SLEUTH model: A case study of eastern corridor of Tehran metropolitan region, Iran,” Environ. Dev. Sustain., 19(2), 527–547, 2017.

D. Triantakonstantis and G. Mountrakis, “Urban growth prediction: A review of computational models and human perceptions,” 2012, 555–587, 2012.

B. Bhatta, Analysis of Urban Growth and Sprawl from Remote Sensing Data. Springer, 2010.

X. Liu, L. Ma, X. Li, B. Ai, S. Li, and Z. He, “Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata,” Int. J. Geogr. Inf. Sci., 28(1), 148–163, 2014.

A. El Garouani, D. J. Mulla, S. El Garouani, and J. Knight, “Analysis of urban growth and sprawl from remote sensing data: Case of Fez, Morocco,” Int. J. Sustain. Built Environ., 6(1), 160–169, 2017.

M. Kindu, T. Schneider, M. Döllerer, D. Teketay, and T. Knoke, “Scenario modelling of land use/land cover changes in Munessa-Shashemene landscape of the Ethiopian highlands,” Sci. Total Environ., 622–623, 534–546, 2018.

H. Shafizadeh-Moghadam, A. Asghari, M. Taleai, M. Helbich, and A. Tayyebi, “Sensitivity analysis and accuracy assessment of the land transformation model using cellular automata,” GIScience Remote Sens., 54(5), 639–656, 2017.

K. R. Dahal and T. E. Chow, “An agent-integrated irregular automata model of urban land-use dynamics,” Int. J. Geogr. Inf. Sci., 28(11), 2281–2303, 2014.

A. A. A. Al-sharif and B. Pradhan, “Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS,” Arab. J. Geosci., 7(10), 4291–4301, 2014.

L. Chen and W. Nuo, “Dynamic simulation of land use changes in Port City: A case study of Dalian, China,” Procedia - Soc. Behav. Sci., 96, 981–992, 2013.

Y. Liu, Y. Hu, S. Long, L. Liu, and X. Liu, “Analysis of the effectiveness of urban land-use-change models based on the measurement of spatio-temporal, dynamic urban growth: A cellular automata case study,” Sustain., 9(5), 1–15, 2017.

I. M. I. M. Brunner, “Prediction of Urban Growth Using the Bucket Model,” Procedia - Soc. Behav. Sci., 227, 3–10, 2016.

S. Şalap-Ayça, P. Jankowski, K. C. Clarke, P. C. Kyriakidis, and A. Nara, “A meta-modeling approach for Spatio-temporal uncertainty and sensitivity analysis: An application for a cellular automata-based Urban growth and land-use change model,” Int. J. Geogr. Inf. Sci., 32(4), 637–662, 2018.

F. Yao, C. Hao, and J. Zhang, “Simulating urban growth processes by integrating cellular automata model and artificial optimization in Binhai New Area of Tianjin, China,” Geocarto Int., 31(6), 612–627, 2016.
Share This Article :
Feri Nugroho

Good understanding using database tools, data visualization, Spatial Analysis with Remote Sensing & GIS Software, Graphic Design, and also understand the programming language PHP and MySQL. Interest on research-based of Conservation, Climate Change, Urban Growth, and Information systems.

TAMBAHKAN KOMENTAR

2956655655531813399